Relationship between temporary inhibition and structure of disulfide-linkage analogs of marinostatin, a natural ester-linked protein protease inhibitor.
J Pept Res
; 66(2): 49-58, 2005 Aug.
Article
en En
| MEDLINE
| ID: mdl-16000118
A 12-residue marinostatin [MST(1-12): (1)FATMRYPSDSDE(12)] which contains two ester linkages of Thr(3)-Asp(9) and Ser(8)-Asp(11) strongly inhibits subtilisin. In order to study the relationship between the inhibitory activity, structure, and stability of MST, MST analogs were prepared by changing ester linkages to a disulfide linkages. The analogs without the disulfide linkage between 3 and 9 positions lost their inhibitory activity. The K(i) value of 1SS(C(3)-C(9)) ((1)FACMRYPSCSDE(12)), which has a single disulfide linkage of Cys(3)-Cys(9) was comparable with those of MST(1-12) and MST-2SS ((1)FACMRYPCCSCE(12)), a doubly linked analog of Cys(3)-Cys(9) and Cys(8)-Cys(11). However, 1SS(C(3)-C(9)) and MST-2SS showed temporary inhibition, but not MST(1-12): These analogs were inactivated after incubation with subtilisin for 30 min, and were specifically hydrolyzed at the reactive site. (1)H NMR study showed that 1SS(C(3)-C(9)) has two conformations, which contain a cis- (70%) or trans- (30%) Pro residue, while MST-2SS as well as MST(1-12) takes a single conformation containing only a cis-Pro residue. Hydrogen-deuterium exchange rate of the Arg(5) (P1') NH proton of the MST analogs was about 100 times faster than that of MST(1-12). These results indicate that the linkage between the positions 8 and 11 plays a role for fixing the cis-conformation of the Pro(7) residue, and that the linkage between 3 and 9 is indispensable for the inhibition, but not enough for stable protease-inhibitor complex.
Search on Google
Banco de datos:
MEDLINE
Asunto principal:
Inhibidores de Proteasas
/
Precursores de Proteínas
/
Proteínas Bacterianas
/
Transportadoras de Casetes de Unión a ATP
/
Subtilisina
Idioma:
En
Año:
2005
Tipo del documento:
Article