Your browser doesn't support javascript.
loading
Classifying antibodies using flow cytometry data: class prediction and class discovery.
Salganik, M P; Milford, E L; Hardie, D L; Shaw, S; Wands, M P.
  • Salganik MP; Department of Biostatistics, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA. salganik@hsph.harvard.edu
Biom J ; 47(5): 740-54, 2005 Oct.
Article en En | MEDLINE | ID: mdl-16385913
Classifying monoclonal antibodies, based on the similarity of their binding to the proteins (antigens) on the surface of blood cells, is essential for progress in immunology, hematology and clinical medicine. The collaborative efforts of researchers from many countries have led to the classification of thousands of antibodies into 247 clusters of differentiation (CD). Classification is based on flow cytometry and biochemical data. In preliminary classifications of antibodies based on flow cytometry data, the object requiring classification (an antibody) is described by a set of random samples from unknown densities of fluorescence intensity. An individual sample is collected in the experiment, where a population of cells of a certain type is stained by the identical fluorescently marked replicates of the antibody of interest. Samples are collected for multiple cell types. The classification problems of interest include identifying new CDs (class discovery or unsupervised learning) and assigning new antibodies to the known CD clusters (class prediction or supervised learning). These problems have attracted limited attention from statisticians. We recommend a novel approach to the classification process in which a computer algorithm suggests to the analyst the subset of the "most appropriate" classifications of an antibody in class prediction problems or the "most similar" pairs/ groups of antibodies in class discovery problems. The suggested algorithm speeds up the analysis of a flow cytometry data by a factor 10-20. This allows the analyst to focus on the interpretation of the automatically suggested preliminary classification solutions and on planning the subsequent biochemical experiments.
Asunto(s)
Search on Google
Banco de datos: MEDLINE Asunto principal: Valor Predictivo de las Pruebas / Citometría de Flujo / Anticuerpos Monoclonales Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2005 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Asunto principal: Valor Predictivo de las Pruebas / Citometría de Flujo / Anticuerpos Monoclonales Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2005 Tipo del documento: Article