Your browser doesn't support javascript.
loading
Competition between alpha-cleavage and energy transfer in alpha-azidoacetophenones.
Muthukrishnan, Sivaramakrishnan; Mandel, Sarah M; Hackett, John C; Singh, Pradeep N D; Hadad, Christopher M; Krause, Jeanette A; Gudmundsdóttir, Anna D.
  • Muthukrishnan S; Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA.
J Org Chem ; 72(8): 2757-68, 2007 Apr 13.
Article en En | MEDLINE | ID: mdl-17373846
ABSTRACT
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.
Search on Google
Banco de datos: MEDLINE Idioma: En Año: 2007 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Idioma: En Año: 2007 Tipo del documento: Article