Your browser doesn't support javascript.
loading
An analytical approach to computing biomolecular electrostatic potential. I. Derivation and analysis.
Fenley, Andrew T; Gordon, John C; Onufriev, Alexey.
  • Fenley AT; Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA. afenley@vt.edu
J Chem Phys ; 129(7): 075101, 2008 Aug 21.
Article en En | MEDLINE | ID: mdl-19044802
ABSTRACT
Analytical approximations to fundamental equations of continuum electrostatics on simple shapes can lead to computationally inexpensive prescriptions for calculating electrostatic properties of realistic molecules. Here, we derive a closed-form analytical approximation to the Poisson equation for an arbitrary distribution of point charges and a spherical dielectric boundary. The simple, parameter-free formula defines continuous electrostatic potential everywhere in space and is obtained from the exact infinite-series (Kirkwood) solution by an approximate summation method that avoids truncating the infinite series. We show that keeping all the terms proves critical for the accuracy of this approximation, which is fully controllable for the sphere. The accuracy is assessed by comparisons with the exact solution for two unit charges placed inside a spherical boundary separating the solute of dielectric 1 and the solvent of dielectric 80. The largest errors occur when the source charges are closest to the dielectric boundary and the test charge is closest to either of the sources. For the source charges placed within 2 A from the boundary, and the test surface located on the boundary, the root-mean-square error of the approximate potential is less than 0.1 kcal/mol/mid Remid R (per unit test charge). The maximum error is 0.4 kcal/mol/mid Remid R. These results correspond to the simplest first-order formula. A strategy for adopting the proposed method for realistic biomolecular shapes is detailed. An extensive testing and performance analysis on real molecular structures are described in Part II that immediately follows this work as a separate publication. Part II also contains an application example.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biopolímeros / Simulación por Computador / Proteínas de la Cápside / Electricidad Estática / Modelos Químicos Idioma: En Año: 2008 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biopolímeros / Simulación por Computador / Proteínas de la Cápside / Electricidad Estática / Modelos Químicos Idioma: En Año: 2008 Tipo del documento: Article