Your browser doesn't support javascript.
loading
Counting of oligomers in sequences generated by markov chains for DNA motif discovery.
Shan, Gao; Zheng, Wei-Mou.
  • Shan G; Beijing Genomics Institute, Shenzhen (BGI-SZ), Shenzhen 518083, China.
J Bioinform Comput Biol ; 7(1): 39-54, 2009 Feb.
Article en En | MEDLINE | ID: mdl-19226659
By means of the technique of the imbedded Markov chain, an efficient algorithm is proposed to exactly calculate first, second moments of word counts and the probability for a word to occur at least once in random texts generated by a Markov chain. A generating function is introduced directly from the imbedded Markov chain to derive asymptotic approximations for the problem. Two Z-scores, one based on the number of sequences with hits and the other on the total number of word hits in a set of sequences, are examined for discovery of motifs on a set of promoter sequences extracted from A. thaliana genome. Source code is available at http://www.itp.ac.cn/zheng/oligo.c.
Asunto(s)
Search on Google
Banco de datos: MEDLINE Asunto principal: Algoritmos / ADN / Reconocimiento de Normas Patrones Automatizadas / Cadenas de Markov / Secuencia de Consenso / Análisis de Secuencia de ADN Tipo de estudio: Health_economic_evaluation Idioma: En Año: 2009 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Asunto principal: Algoritmos / ADN / Reconocimiento de Normas Patrones Automatizadas / Cadenas de Markov / Secuencia de Consenso / Análisis de Secuencia de ADN Tipo de estudio: Health_economic_evaluation Idioma: En Año: 2009 Tipo del documento: Article