Your browser doesn't support javascript.
loading
The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways.
Alessio, N; Squillaro, T; Cipollaro, M; Bagella, L; Giordano, A; Galderisi, U.
  • Alessio N; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA.
Oncogene ; 29(40): 5452-63, 2010 Oct 07.
Article en En | MEDLINE | ID: mdl-20697355
ABSTRACT
We focused our attention on brahma-related gene 1 (BRG1), the ATPase subunit of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, and analyzed its role in mesenchymal stem cell (MSC) biology. We hypothesized that deviation from the correct concentration of these proteins, which act at the highest level of gene regulation, may be deleterious for cells. We wanted to know what would happen if a cell had to cope with altered regulation of gene expression, either by upregulation or downregulation of BRG1. We assumed that cells would try to restore homeostasis or, alternatively, that the event could trigger senescence/apoptosis phenomena. To this end, in MSCs, we silenced BRG1gene. Knockdown of BRG1 expression induced a significant increase in senescent cells and decrease in apoptotic cells. It is interesting that BRG1 downregulation also induced an increase in heterochromatin. At the molecular level, these phenomena were associated with activation of retinoblastoma-like protein 2 (RB2)/P130- and P53-related pathways. Senescence was accompanied by reduced expression of some stemness-related genes. This is consistent with our previous research, which showed that BRG1 upregulation by ectopic expression also induced senescence processes. Together, these data suggest that BRG1 belongs to a class of genes whose expression is tightly regulated; hence, subtle alterations in BRG1 activity seem to negatively affect mechanisms regulating chromatin status and, in turn, impair cellular physiology.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Proteínas Nucleares / Transducción de Señal / Regulación de la Expresión Génica / Senescencia Celular / ADN Helicasas / Ensamble y Desensamble de Cromatina / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2010 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Proteínas Nucleares / Transducción de Señal / Regulación de la Expresión Génica / Senescencia Celular / ADN Helicasas / Ensamble y Desensamble de Cromatina / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2010 Tipo del documento: Article