Your browser doesn't support javascript.
loading
[Directed acyclic graphs (DAGs) - the application of causal diagrams in epidemiology]. / Directed Acyclic Graphs (DAGs) - Die Anwendung kausaler Graphen in der Epidemiologie.
Schipf, S; Knüppel, S; Hardt, J; Stang, A.
  • Schipf S; Institut für Community Medicine, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald. sabine.schipf@uni-greifswald.de
Gesundheitswesen ; 73(12): 888-92, 2011 Dec.
Article en De | MEDLINE | ID: mdl-22193898
Causal graphs such as directed acyclic graphs (DAGs) are a novel approach in epidemiology to conceptualize confounding and other sources of bias. DAGs visually encode the causal relations based on a priori knowledge among the exposure of interest and the outcome while considering several covariates. The application of formal rules on these diagrams enables the identification of the causal and non-causal structures in the DAG. The causal effects are of interest and require no adjustment. Whereas the non-causal effects have to be checked for confounding and for which covariates adjustment is necessary. The identification of the adjustment set depends on the causal relations among the variables. The consideration of these relations is valuable because adjusting for more variables increases the risk of introducing bias. Considering every single path of a DAG allows the systematic identification of the causal structures in the DAG, and the determination of minimally sufficient adjustment sets for estimating the causal effect of the exposure on the outcome based on the underlying DAG. The aim of this paper is to provide an introduction to the basic assumptions as well as the steps for drawing and applying a DAG.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Gráficos por Computador / Métodos Epidemiológicos / Causalidad / Interpretación Estadística de Datos / Biometría Tipo de estudio: Prognostic_studies / Screening_studies Idioma: De Año: 2011 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Gráficos por Computador / Métodos Epidemiológicos / Causalidad / Interpretación Estadística de Datos / Biometría Tipo de estudio: Prognostic_studies / Screening_studies Idioma: De Año: 2011 Tipo del documento: Article