Your browser doesn't support javascript.
loading
Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm.
Acharya, U Rajendra; Sree, S Vinitha; Ribeiro, Ricardo; Krishnamurthi, Ganapathy; Marinho, Rui Tato; Sanches, Joao; Suri, Jasjit S.
  • Acharya UR; Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore. aru@np.edu.sg
Med Phys ; 39(7): 4255-64, 2012 Jul.
Article en En | MEDLINE | ID: mdl-22830759
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Interpretación de Imagen Asistida por Computador / Técnica de Sustracción / Ultrasonografía / Sistemas de Información Radiológica / Hígado Graso / Minería de Datos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Año: 2012 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Interpretación de Imagen Asistida por Computador / Técnica de Sustracción / Ultrasonografía / Sistemas de Información Radiológica / Hígado Graso / Minería de Datos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Año: 2012 Tipo del documento: Article