Identification of the catalytic Mg²âº ion in the hepatitis delta virus ribozyme.
Biochemistry
; 52(3): 557-67, 2013 Jan 22.
Article
en En
| MEDLINE
| ID: mdl-23311293
The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pK(a) shifted toward neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the precleavage ribozyme identified a Mg²âº ion that interacts through its partial hydration sphere with the G25·U20 reverse wobble. In addition, this Mg²âº ion is in position to directly coordinate the nucleophile, the 2'-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2'-hydroxyl. To test the role of the active site Mg²âº ion, we replaced the G25·U20 reverse wobble with an isosteric A25·C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg²âº binding could be adversely affected by the mutation. The kinetic analysis and molecular dynamics of the A25·C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant in the presence of Mg²âº are inverted relative to the profiles for the wild-type ribozyme, suggesting that the A25·C20 double mutant has lost the active site metal ion. Overall, these studies support a model in which the partially hydrated Mg²âº positioned at the G25·U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
ARN Viral
/
Virus de la Hepatitis Delta
/
ARN Catalítico
/
Magnesio
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Año:
2013
Tipo del documento:
Article