Your browser doesn't support javascript.
loading
Backbone ¹H, ¹³C, ¹5N NMR assignments of yeast OMP synthase in unliganded form and in complex with orotidine 5'-monophosphate.
Hansen, Michael Riis; Harris, Richard; Barr, Eric W; Cheng, Hong; Girvin, Mark E; Grubmeyer, Charles.
  • Hansen MR; Department of Biochemistry, Temple University School of Medicine, 3307 N Broad St., Philadelphia, PA, 19140, USA.
Biomol NMR Assign ; 8(1): 103-8, 2014 Apr.
Article en En | MEDLINE | ID: mdl-23315339
ABSTRACT
The type I phosphoribosyltransferase OMP synthase (EC 2.4.2.10) is involved in de novo synthesis of pyrimidine nucleotides forming the UMP precursor orotidine 5'-monophosphate (OMP). The homodimeric enzyme has a Rossman α/ß core topped by a base-enclosing "hood" domain and a flexible domain-swapped catalytic loop. High-resolution X-ray structures of the homologous Salmonella typhimurium and yeast enzymes show that a general compacting of the core as well as movement of the hood and a major disorder-to-order transition of the loop occur upon binding of ligands MgPRPP and orotate. Here we present backbone NMR assignments for the unliganded yeast enzyme (49 kDa) and its complex with product OMP. We were able to assign 212-213 of the 225 non-proline backbone (15)N and amide proton resonances. Significant difference in chemical shifts of the amide cross peaks occur in regions of the structure that undergo movement upon ligand occupancy in the S. typhimurium enzyme.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Orotato Fosforribosiltransferasa / Saccharomyces cerevisiae / Resonancia Magnética Nuclear Biomolecular Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Orotato Fosforribosiltransferasa / Saccharomyces cerevisiae / Resonancia Magnética Nuclear Biomolecular Idioma: En Año: 2014 Tipo del documento: Article