Your browser doesn't support javascript.
loading
A statistical approach for analyzing the development of 1H multiple-quantum coherence in solids.
Mogami, Yuuki; Noda, Yasuto; Ishikawa, Hiroto; Takegoshi, K.
  • Mogami Y; Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Phys Chem Chem Phys ; 15(19): 7403-10, 2013 May 21.
Article en En | MEDLINE | ID: mdl-23580152
ABSTRACT
A novel statistical approach for analyzing (1)H multiple-quantum (MQ) spin dynamics in so-called spin-counting solid-state NMR experiments is presented. The statistical approach is based on the percolation theory with Monte Carlo methods and is examined by applying it to the experimental results of three solid samples having unique hydrogen arrangement for 1-3 dimensions the n-alkane/d-urea inclusion complex as a one-dimensional (1D) system, whose (1)H nuclei align approximately in 1D, and magnesium hydroxide and adamantane as a two-dimensional (2D) and a three-dimensional (3D) system, respectively. Four lattice models, linear, honeycomb, square and cubic, are used to represent the (1)H arrangement of the three samples. It is shown that the MQ dynamics in adamantane is consistent with that calculated using the cubic lattice and that in Mg(OH)2 with that calculated using the honeycomb and the square lattices. For n-C20H42/d-urea, these 4 lattice models fail to express its result. It is shown that a more realistic model representing the (1)H arrangement of n-C20H42/d-urea can describe the result. The present approach can thus be used to determine (1)H arrangement in solids.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article