Your browser doesn't support javascript.
loading
Poisson ratio and excess low-frequency vibrational states in glasses.
Duval, Eugène; Deschamps, Thierry; Saviot, Lucien.
  • Duval E; Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, F-69622 Villeurbanne Cedex, France.
J Chem Phys ; 139(6): 064506, 2013 Aug 14.
Article en En | MEDLINE | ID: mdl-23947870
ABSTRACT
In glass, starting from a dependence of the Angell's fragility on the Poisson ratio [V. N. Novikov and A. P. Sokolov, Nature 431, 961 (2004)], and a dependence of the Poisson ratio on the atomic packing density [G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nature Mater. 10, 823 (2011)], we propose that the heterogeneities are predominantly density fluctuations in strong glasses (lower Poisson ratio) and shear elasticity fluctuations in fragile glasses (higher Poisson ratio). Because the excess of low-frequency vibration modes in comparison with the Debye regime (boson peak) is strongly connected to these fluctuations, we propose that they are breathing-like (with change of volume) in strong glasses and shear-like (without change of volume) in fragile glasses. As a verification, it is confirmed that the excess modes in the strong silica glass are predominantly breathing-like. Moreover, it is shown that the excess breathing-like modes in a strong polymeric glass are replaced by shear-like modes under hydrostatic pressure as the glass becomes more compact.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article