Your browser doesn't support javascript.
loading
Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.
Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei.
  • Xie LH; Key Laboratory for Organic Electronics and Information Displays, Center for Molecular Systems and Organic Devices, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China.
Philos Trans A Math Phys Eng Sci ; 371(2000): 20120337, 2013 Oct 13.
Article en En | MEDLINE | ID: mdl-24000368
ABSTRACT
Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article