Your browser doesn't support javascript.
loading
The splicing landscape is globally reprogrammed during male meiosis.
Schmid, Ralf; Grellscheid, Sushma Nagaraja; Ehrmann, Ingrid; Dalgliesh, Caroline; Danilenko, Marina; Paronetto, Maria Paola; Pedrotti, Simona; Grellscheid, David; Dixon, Richard J; Sette, Claudio; Eperon, Ian C; Elliott, David J.
  • Schmid R; Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK, School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK, Department of Health Sciences, University of 00135 Rome 'Foro Italico', Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Public Health and Cell Bio
Nucleic Acids Res ; 41(22): 10170-84, 2013 Dec.
Article en En | MEDLINE | ID: mdl-24038356
ABSTRACT
Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2ß, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2ß and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5' splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Testículo / Empalme Alternativo / Meiosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Testículo / Empalme Alternativo / Meiosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2013 Tipo del documento: Article