Your browser doesn't support javascript.
loading
Mechanical stability and reversible fracture of vault particles.
Llauró, Aida; Guerra, Pablo; Irigoyen, Nerea; Rodríguez, José F; Verdaguer, Núria; de Pablo, Pedro J.
  • Llauró A; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
  • Guerra P; Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.
  • Irigoyen N; Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
  • Rodríguez JF; Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
  • Verdaguer N; Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.
  • de Pablo PJ; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain. Electronic address: p.j.depablo@uam.es.
Biophys J ; 106(3): 687-95, 2014 Feb 04.
Article en En | MEDLINE | ID: mdl-24507609
ABSTRACT
Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Partículas Ribonucleoproteicas en Bóveda / Elasticidad Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Partículas Ribonucleoproteicas en Bóveda / Elasticidad Idioma: En Año: 2014 Tipo del documento: Article