Your browser doesn't support javascript.
loading
Ubiquitin ligase Cbl-b and obesity-induced insulin resistance.
Abe, Tomoki; Hirasaka, Katsuya; Kohno, Shohei; Ochi, Arisa; Yamagishi, Naoko; Ohno, Ayako; Teshima-Kondo, Shigetada; Nikawa, Takeshi.
  • Abe T; Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
Endocr J ; 61(6): 529-38, 2014.
Article en En | MEDLINE | ID: mdl-24614797
ABSTRACT
Obesity causes type 2 diabetes, atherosclerosis and cardiovascular diseases by inducing systemic insulin resistance. It is now recognized that obesity is related to chronic low-grade inflammation in adipose tissue. Specifically, activated immune cells infiltrate adipose tissue and cause inflammation. There is increasing evidence that activated macrophages accumulate in the hypertrophied adipose tissue of rodents and humans and induce systemic insulin resistance by secreting inflammatory cytokines. Accordingly, a better understanding of the molecular mechanisms underlying macrophage activation in adipose tissue will facilitate the development of new therapeutic strategies. Currently, little is known about the regulation of macrophage activation, although E3 ubiquitin ligase Casitas B-lineage lymphoma (Cbl)-b was identified recently as a novel negative regulator of macrophage activation in adipose tissue. Cbl-b, which is a suppressor of T- and B-cell activation, inhibits intracellular signal transduction by targeting some tyrosine kinases. Notably, preventing Cbl-b-mediated macrophage activation improves obesity-induced insulin resistance in mice. c-Cbl is another member of the Cbl family that is associated with insulin resistance in obesity. These reports suggest that Cbl-b and c-Cbl are potential therapeutic targets for treating obesity-induced insulin resistance. In this review, we focus on the importance of Cbl-b in macrophage activation in aging-induced and high-fat diet-induced obesity.
Asunto(s)
Search on Google
Banco de datos: MEDLINE Asunto principal: Resistencia a la Insulina / Proteínas Adaptadoras Transductoras de Señales / Proteínas Proto-Oncogénicas c-cbl / Obesidad Límite: Animals / Humans Idioma: En Año: 2014 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Asunto principal: Resistencia a la Insulina / Proteínas Adaptadoras Transductoras de Señales / Proteínas Proto-Oncogénicas c-cbl / Obesidad Límite: Animals / Humans Idioma: En Año: 2014 Tipo del documento: Article