Your browser doesn't support javascript.
loading
Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord.
Czarnecki, Antonny; Le Corronc, Hervé; Rigato, Chiara; Le Bras, Barbara; Couraud, François; Scain, Anne-Laure; Allain, Anne-Emilie; Mouffle, Christine; Bullier, Erika; Mangin, Jean-Marie; Branchereau, Pascal; Legendre, Pascal.
  • Czarnecki A; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1130, Université Pierre et Marie Curie, Paris, Ile de France, France, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8246, Université Pierre et Marie Curie, Ile de France, France, Université Pierre et Marie Curie UM CR18 Université Paris 06, Ile de France, France, Université d'Angers, 49000 Angers, France, Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aqui
J Neurosci ; 34(18): 6389-404, 2014 Apr 30.
Article en En | MEDLINE | ID: mdl-24790209
ABSTRACT
A remarkable feature of early neuronal networks is their endogenous ability to generate spontaneous rhythmic electrical activity independently of any external stimuli. In the mouse embryonic SC, this activity starts at an embryonic age of ∼ 12 d and is characterized by bursts of action potentials recurring every 2-3 min. Although these bursts have been extensively studied using extracellular recordings and are known to play an important role in motoneuron (MN) maturation, the mechanisms driving MN activity at the onset of synaptogenesis are still poorly understood. Because only cholinergic antagonists are known to abolish early spontaneous activity, it has long been assumed that spinal cord (SC) activity relies on a core network of MNs synchronized via direct cholinergic collaterals. Using a combination of whole-cell patch-clamp recordings and extracellular recordings in E12.5 isolated mouse SC preparations, we found that spontaneous MN activity is driven by recurrent giant depolarizing potentials. Our analysis reveals that these giant depolarizing potentials are mediated by the activation of GABA, glutamate, and glycine receptors. We did not detect direct nAChR activation evoked by ACh application on MNs, indicating that cholinergic inputs between MNs are not functional at this age. However, we obtained evidence that the cholinergic dependency of early SC activity reflects a presynaptic facilitation of GABA and glutamate synaptic release via nicotinic AChRs. Our study demonstrates that, even in its earliest form, the activity of spinal MNs relies on a refined poly-synaptic network and involves a tight presynaptic cholinergic regulation of both GABAergic and glutamatergic inputs.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Médula Espinal / Potenciales de Acción / Acetilcolina / Uniones Comunicantes / Ácido Glutámico / Ácido gamma-Aminobutírico / Glicina / Neuronas Motoras / Red Nerviosa Límite: Animals / Pregnancy Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Médula Espinal / Potenciales de Acción / Acetilcolina / Uniones Comunicantes / Ácido Glutámico / Ácido gamma-Aminobutírico / Glicina / Neuronas Motoras / Red Nerviosa Límite: Animals / Pregnancy Idioma: En Año: 2014 Tipo del documento: Article