Your browser doesn't support javascript.
loading
MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus.
Reynolds, Lisa A; Harcus, Yvonne; Smith, Katherine A; Webb, Lauren M; Hewitson, James P; Ross, Ewan A; Brown, Sheila; Uematsu, Satoshi; Akira, Shizuo; Gray, David; Gray, Mohini; MacDonald, Andrew S; Cunningham, Adam F; Maizels, Rick M.
  • Reynolds LA; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Harcus Y; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Smith KA; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Webb LM; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Hewitson JP; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Ross EA; Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom;
  • Brown S; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Uematsu S; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan;
  • Akira S; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
  • Gray D; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Gray M; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • MacDonald AS; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
  • Cunningham AF; Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom;
  • Maizels RM; Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; r.maizels@ed.ac.uk.
J Immunol ; 193(6): 2984-93, 2014 Sep 15.
Article en En | MEDLINE | ID: mdl-25114104
ABSTRACT
Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4(+) cells. In addition, MyD88(-/-) mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain-containing adapter-inducing IFN-ß adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1(-/-) mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R-MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1(-/-) and MyD88(-/-) mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1(-/-)) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Nematospiroides dubius / Infecciones por Strongylida / Factor 88 de Diferenciación Mieloide Límite: Animals Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Nematospiroides dubius / Infecciones por Strongylida / Factor 88 de Diferenciación Mieloide Límite: Animals Idioma: En Año: 2014 Tipo del documento: Article