Your browser doesn't support javascript.
loading
Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J.
  • Ehret PJ; University of California, Santa Barbara, USA.
  • Monroe BM; University of Alabama, Tuscaloosa, USA.
  • Read SJ; University of Southern California, Los Angeles, USA read@rcf.usc.edu.
Pers Soc Psychol Rev ; 19(2): 148-76, 2015 May.
Article en En | MEDLINE | ID: mdl-25168638
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Percepción Social / Actitud / Redes Neurales de la Computación / Modelos Psicológicos Límite: Humans Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Percepción Social / Actitud / Redes Neurales de la Computación / Modelos Psicológicos Límite: Humans Idioma: En Año: 2015 Tipo del documento: Article