Your browser doesn't support javascript.
loading
Annulated and bridged tetrahydrofurans from alkenoxyl radical cyclization.
Schur, Christine; Kelm, Harald; Gottwald, Thomas; Ludwig, Arne; Kneuer, Rainer; Hartung, Jens.
  • Schur C; Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany. hartung@chemie.uni-kl.de.
Org Biomol Chem ; 12(41): 8288-307, 2014 Nov 07.
Article en En | MEDLINE | ID: mdl-25208936
ABSTRACT
4-Pentenoxyl radicals sharing two or more carbon atoms with a cycloalkane cyclize in a predictable manner stereoselectively and regioselectively to afford in solutions of bromotrichloromethane cycloalkyl-fused or -bridged 2-bromomethyltetrahydrofurans in up to 95% yield. Stereoselectivity in alkenoxyl radical ring closures arises from cumulative steric effects. The substituent positioned the closest to the alkene carbon, which is being attacked by the oxygen radical, exerts the strongest stereodirecting effect. This principal inductor guides 5-exo-cyclization 2,3-trans- or 2,4-cis-selectively. The substituent located further from the attacked π-bond is the secondary inductor. A secondary inductor in the relative trans-configuration enhances stereodifferentiation by the primary inductor; a cis-configured secondary inductor decreases this effect. A secondary inductor is not able to overrule the guiding effect of a similar sized primary inductor. Intramolecular 4-pentenoxyl radical additions to a cyclohexene-bound exo-methylene group or to endocyclic double bonds proceed cis-specifically, as exemplified by synthesis of a diastereomerically pure bromobicyclo[2.2.1]heptyl-annulated tetrahydrofuran from the verbenylethyloxyl radical. According to theory, the experimental 2,3-cis-specificity in alkoxyl radical cyclization to an endocyclic π-bond arises from strain associated with the 2,3-trans-ring closure.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2014 Tipo del documento: Article