Your browser doesn't support javascript.
loading
Dual proteolytic pathways govern glycolysis and immune competence.
Lu, Wei; Zhang, Yu; McDonald, David O; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H; Morgan, Neil V; Reynard, Louise N; Zheng, Lixin; Murdock, Heardley M; Turvey, Stuart E; Hackett, Scott J; Prestidge, Tim; Hall, Julie M; Cant, Andrew J; Matthews, Helen F; Koref, Mauro F Santibanez; Simon, Anna Katharina; Korolchuk, Viktor I; Lenardo, Michael J; Hambleton, Sophie; Su, Helen C.
  • Lu W; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Zhang Y; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • McDonald DO; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Jing H; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Carroll B; Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Robertson N; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
  • Zhang Q; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Griffin H; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
  • Sanderson S; NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
  • Lakey JH; Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Morgan NV; Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
  • Reynard LN; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Zheng L; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Murdock HM; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Turvey SE; Department of Pediatrics, Child & Family Research Institute and BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
  • Hackett SJ; Paediatric Immunology Department, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK.
  • Prestidge T; Blood and Cancer Center, Starship Children's Hospital, Auckland 1142, New Zealand.
  • Hall JM; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
  • Cant AJ; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
  • Matthews HF; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Koref MF; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
  • Simon AK; NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Unit Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
  • Korolchuk VI; Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Lenardo MJ; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
  • Hambleton S; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK. Electronic address: sophie.hambleton@newcastle.ac.uk.
  • Su HC; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address: hsu@niaid.nih.gov.
Cell ; 159(7): 1578-90, 2014 Dec 18.
Article en En | MEDLINE | ID: mdl-25525876
ABSTRACT
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1ß. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Serina Endopeptidasas / Dipeptidil-Peptidasas y Tripeptidil-Peptidasas / Inmunidad Adaptativa / Proteolisis / Glucólisis / Aminopeptidasas / Inmunidad Innata / Síndromes de Inmunodeficiencia Límite: Animals / Female / Humans / Male Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Serina Endopeptidasas / Dipeptidil-Peptidasas y Tripeptidil-Peptidasas / Inmunidad Adaptativa / Proteolisis / Glucólisis / Aminopeptidasas / Inmunidad Innata / Síndromes de Inmunodeficiencia Límite: Animals / Female / Humans / Male Idioma: En Año: 2014 Tipo del documento: Article