Your browser doesn't support javascript.
loading
Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets.
Gangodagamage, Chandana; Rowland, Joel C; Hubbard, Susan S; Brumby, Steven P; Liljedahl, Anna K; Wainwright, Haruko; Wilson, Cathy J; Altmann, Garrett L; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E; Wullschleger, Stan D.
  • Gangodagamage C; Los Alamos National Laboratory Los Alamos, New Mexico, USA.
  • Rowland JC; Los Alamos National Laboratory Los Alamos, New Mexico, USA.
  • Hubbard SS; Lawrence Berkeley National Laboratory Berkeley, California, USA.
  • Brumby SP; Los Alamos National Laboratory Los Alamos, New Mexico, USA.
  • Liljedahl AK; Water and Environmental Research Center and International Arctic Research Center, University of Alaska Fairbanks Fairbanks, Alaska, USA.
  • Wainwright H; Lawrence Berkeley National Laboratory Berkeley, California, USA.
  • Wilson CJ; Los Alamos National Laboratory Los Alamos, New Mexico, USA.
  • Altmann GL; Los Alamos National Laboratory Los Alamos, New Mexico, USA.
  • Dafflon B; Lawrence Berkeley National Laboratory Berkeley, California, USA.
  • Peterson J; Lawrence Berkeley National Laboratory Berkeley, California, USA.
  • Ulrich C; Lawrence Berkeley National Laboratory Berkeley, California, USA.
  • Tweedie CE; Department of Biological Sciences, University of Texas at El Paso El Paso, Texas, USA.
  • Wullschleger SD; Oak Ridge National Laboratory Oak Ridge, Tennessee, USA.
Water Resour Res ; 50(8): 6339-6357, 2014 Aug.
Article en En | MEDLINE | ID: mdl-25558114
ABSTRACT
Landscape attributes that vary with microtopography, such as active layer thickness (ALT), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r2 = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT, consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2014 Tipo del documento: Article