Your browser doesn't support javascript.
loading
The role and interaction of imprinted genes in human fetal growth.
Moore, Gudrun E; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J; Thomas, Anna C; Abu-Amero, Sayeda; Frost, Jennifer M; Stafford, Jaime L; Chaoqun, Yao; Duncan, Andrew J; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C; Syngelaki, Argyro; Nicolaides, Kypros H; Regan, Lesley; Monk, David; Stanier, Philip.
  • Moore GE; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK gudrun.moore@ucl.ac.uk.
  • Ishida M; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Demetriou C; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Al-Olabi L; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Leon LJ; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Thomas AC; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Abu-Amero S; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Frost JM; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Stafford JL; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Chaoqun Y; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Duncan AJ; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Baigel R; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Brimioulle M; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Iglesias-Platas I; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Apostolidou S; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Aggarwal R; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Whittaker JC; Noncommunicable Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK.
  • Syngelaki A; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK.
  • Nicolaides KH; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK.
  • Regan L; Department of Obstetrics and Gynaecology, Imperial College London, St Mary's Campus, London W2 1NY, UK.
  • Monk D; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
  • Stanier P; Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK.
Philos Trans R Soc Lond B Biol Sci ; 370(1663): 20140074, 2015 Mar 05.
Article en En | MEDLINE | ID: mdl-25602077
ABSTRACT
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Placenta / Impresión Genómica / Regulación del Desarrollo de la Expresión Génica / Desarrollo Fetal Tipo de estudio: Prognostic_studies Límite: Female / Humans / Pregnancy Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Placenta / Impresión Genómica / Regulación del Desarrollo de la Expresión Génica / Desarrollo Fetal Tipo de estudio: Prognostic_studies Límite: Female / Humans / Pregnancy Idioma: En Año: 2015 Tipo del documento: Article