Your browser doesn't support javascript.
loading
QSAR model as a random event: A case of rat toxicity.
Toropova, Alla P; Toropov, Andrey A; Benfenati, Emilio; Leszczynska, Danuta; Leszczynski, Jerzy.
  • Toropova AP; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milano, Italy.
  • Toropov AA; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milano, Italy. Electronic address: andrey.toropov@marionegri.it.
  • Benfenati E; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milano, Italy.
  • Leszczynska D; Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, 1325 Lynch St, Jackson, MS 39217-0510, USA.
  • Leszczynski J; Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, 1400 J.R. Lynch Street, PO Box 17910, Jackson, MS 39217, USA.
Bioorg Med Chem ; 23(6): 1223-30, 2015 Mar 15.
Article en En | MEDLINE | ID: mdl-25703247
Quantitative structure-property/activity relationships (QSPRs/QSARs) can be used to predict physicochemical and/or biochemical behavior of substances which were not studied experimentally. Typically predicted values for chemicals in the training set are accurate since they were used to build the model. QSPR/QSAR models must be validated before they are used in practice. Unfortunately, the majority of the suggested approaches of the validation of QSPR/QSAR models are based on consideration of geometrical features of clusters of data points in the plot of experimental versus calculated values of an endpoint. We believe these geometrical criteria can be more useful if they are analyzed for several splits into the training and test sets. In this way, one can estimate the reproducibility of the model with various splits and better evaluate model reliability. The probability of the correct prediction of an endpoint for external validation set (in the series of the above-mentioned splits) can provide an useful way to evaluate the domain of applicability of the model.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Relación Estructura-Actividad Cuantitativa Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Relación Estructura-Actividad Cuantitativa Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2015 Tipo del documento: Article