Your browser doesn't support javascript.
loading
Ruminococcal cellulosome systems from rumen to human.
Ben David, Yonit; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Koropatkin, Nicole M; Martens, Eric C; White, Bryan A; Bernalier-Donadille, Annick; Duncan, Sylvia H; Flint, Harry J; Bayer, Edward A; Moraïs, Sarah.
  • Ben David Y; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
  • Dassa B; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
  • Borovok I; Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.
  • Lamed R; Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.
  • Koropatkin NM; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
  • Martens EC; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
  • White BA; Department of Animal Sciences and Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
  • Bernalier-Donadille A; Unite de Microbiologie UR454, INRA, CR de Clermont-Ferrand/Theix, Saint-Genes Champanelle, France.
  • Duncan SH; Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
  • Flint HJ; Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
  • Bayer EA; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
  • Moraïs S; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
Environ Microbiol ; 17(9): 3407-26, 2015 Sep.
Article en En | MEDLINE | ID: mdl-25845888
ABSTRACT
A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Rumen / Proteínas Bacterianas / Proteínas Cromosómicas no Histona / Celulosa / Proteínas de Ciclo Celular / Celulosomas / Ruminococcus / Complejos Multienzimáticos Límite: Animals / Humans Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Rumen / Proteínas Bacterianas / Proteínas Cromosómicas no Histona / Celulosa / Proteínas de Ciclo Celular / Celulosomas / Ruminococcus / Complejos Multienzimáticos Límite: Animals / Humans Idioma: En Año: 2015 Tipo del documento: Article