Your browser doesn't support javascript.
loading
Zeolites for the selective adsorption of sulfur hexafluoride.
Matito-Martos, I; Álvarez-Ossorio, J; Gutiérrez-Sevillano, J J; Doblaré, M; Martin-Calvo, A; Calero, S.
  • Matito-Martos I; Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Sevilla 41013, Spain. amarcal@upo.es scalero@upo.es.
Phys Chem Chem Phys ; 17(27): 18121-30, 2015 Jul 21.
Article en En | MEDLINE | ID: mdl-26099734
ABSTRACT
Molecular simulations have been used to investigate at the molecular level the suitability of zeolites with different topology on the adsorption, diffusion and separation of a nitrogen-sulfur hexafluoride mixture containing the latter at low concentration. This mixture represents the best alternative for the sulfur hexafluoride in industry since it reduces the use of this powerful greenhouse gas. A variety of zeolites are tested with the aim to identify the best structure for the recycling of sulfur hexafluoride in order to avoid its emission to the atmosphere and to overcome the experimental difficulties of its handling. Even though all zeolites show preferential adsorption of sulfur hexafluoride, we identified local structural features that reduce the affinity for sulfur hexafluoride in zeolites such as MOR and EON, providing exclusive adsorption sites for nitrogen. Structures such as ASV and FER were initially considered as good candidates based on their adsorption features. However, they were further discarded based on their diffusion properties. Regarding operation conditions for separation, the range of pressure that spans from 3 × 10(2) to 3 × 10(3) kPa was identified as the optimal to obtain the highest adsorption loading and the largest SF6/N2 selectivity. Based on these findings, zeolites BEC, ITR, IWW, and SFG were selected as the most promising materials for this particular separation.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2015 Tipo del documento: Article