Your browser doesn't support javascript.
loading
Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae.
Manfrini, Nicola; Clerici, Michela; Wery, Maxime; Colombo, Chiara Vittoria; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia.
  • Manfrini N; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
  • Clerici M; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
  • Wery M; Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France.
  • Colombo CV; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
  • Descrimes M; Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France.
  • Morillon A; Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France.
  • d'Adda di Fagagna F; IFOM Foundation, FIRC Institute of Molecular Oncology Foundation, Milan, Italy.
  • Longhese MP; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
Elife ; 42015 Jul 31.
Article en En | MEDLINE | ID: mdl-26231041
Emerging evidence indicate that the mammalian checkpoint kinase ATM induces transcriptional silencing in cis to DNA double-strand breaks (DSBs) through a poorly understood mechanism. Here we show that in Saccharomyces cerevisiae a single DSB causes transcriptional inhibition of proximal genes independently of Tel1/ATM and Mec1/ATR. Since the DSB ends undergo nucleolytic degradation (resection) of their 5'-ending strands, we investigated the contribution of resection in this DSB-induced transcriptional inhibition. We discovered that resection-defective mutants fail to stop transcription around a DSB, and the extent of this failure correlates with the severity of the resection defect. Furthermore, Rad9 and generation of γH2A reduce this DSB-induced transcriptional inhibition by counteracting DSB resection. Therefore, the conversion of the DSB ends from double-stranded to single-stranded DNA, which is necessary to initiate DSB repair by homologous recombination, is responsible for loss of transcription around a DSB in S. cerevisiae.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Transcripción Genética / Enzimas Reparadoras del ADN / Roturas del ADN de Doble Cadena Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Transcripción Genética / Enzimas Reparadoras del ADN / Roturas del ADN de Doble Cadena Idioma: En Año: 2015 Tipo del documento: Article