Your browser doesn't support javascript.
loading
Conformation, self-aggregation, and membrane interaction of peptaibols as studied by pulsed electron double resonance spectroscopy.
Milov, Alexander D; Tsvetkov, Yuri D; Raap, Jan; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio.
  • Milov AD; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation.
  • Tsvetkov YD; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation.
  • Raap J; Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
  • De Zotti M; Department of Chemistry, University of Padova, Padova, 35131, Italy.
  • Formaggio F; Department of Chemistry, University of Padova, Padova, 35131, Italy.
  • Toniolo C; Department of Chemistry, University of Padova, Padova, 35131, Italy.
Biopolymers ; 106(1): 6-24, 2016 Jan.
Article en En | MEDLINE | ID: mdl-26270729
ABSTRACT
Pulsed EPR methods, in particular pulsed electron double resonance (PELDOR) [or double electron-electron resonance (DEER)], are very sensitive to the dipole ··· dipole interaction between electron spins in a pair of free radicals. Using PELDOR, the conformations of a number of double radical-containing biomolecules have been determined. In this review article, we focused our attention on the application of this spectroscopy to nitroxide-labeled peptaibols. This is an emerging class of naturally occurring, relatively short, linear, helical peptide molecules endowed with hydrophobic character, capability to interact with and to alter the structure of membranes, and antibiotic activity. We extracted detailed information on the secondary structures of specifically site-directed, double nitroxide-labeled peptaibols under a variety of experimental conditions, including biologically relevant environments. Moreover, we examined in-depth peptaibol clustering, related to the marked propensity of these molecules to undergo self-association in model and whole-cell membrane systems, using mainly mono-nitroxide-containing synthetic analogs. Finally, based on the PELDOR data accumulated, we proposed models of supramolecular (quaternary) structures of peptaibols and their binding modes to membranes.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia por Spin del Electrón / Peptaiboles Idioma: En Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia por Spin del Electrón / Peptaiboles Idioma: En Año: 2016 Tipo del documento: Article