Your browser doesn't support javascript.
loading
Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.
Kim, Hui-Seon; Park, Nam-Gyu.
  • Kim HS; School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University (SKKU), 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea.
  • Park NG; School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University (SKKU), 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea.
J Phys Chem Lett ; 5(17): 2927-34, 2014 Sep 04.
Article en En | MEDLINE | ID: mdl-26278238
Current-voltage (I-V) characteristics of CH3NH3PbI3 perovskite solar cells are studied using a time-dependent current response with stepwise sweeping of the bias voltage. Compared with the crystalline Si solar cell showing time-independent current at a given bias voltage, the perovskite solar cells exhibit time-dependent current response. The current increases with time and becomes steady at forward scan from short-circuit to open-circuit, whereas it is decayed and saturated with time at reverse scan from open-circuit to short-circuit. Time-dependent current response eventually leads to I-V hysteresis depending on the scan direction and the scan rate. Crystal size of CH3NH3PbI3 and the mesoporous TiO2 (mp-TiO2) film are found to influence I-V hysteresis, where the I-V hysteresis is alleviated as crystal size increases and in the presence of mp-TiO2. The capacitance observed at low frequency (0.1 to 1 Hz), associated with dipole polarization, tends to diminish as size of perovskite and mp-TiO2 layer thickness increases, which suggests that the origin of hysteresis correlates to the capacitive characteristic of CH3NH3PbI3 and the degree of hysteresis depends strongly on perovskite crystal size and mesoporous TiO2 layer.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2014 Tipo del documento: Article