Your browser doesn't support javascript.
loading
The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development.
Dickerman, Benjamin K; White, Christine L; Kessler, Patricia M; Sadler, Anthony J; Williams, Bryan R G; Sen, Ganes C.
  • Dickerman BK; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA.
  • White CL; Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, OH, USA.
  • Kessler PM; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA.
  • Sadler AJ; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA.
  • Williams BR; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
  • Sen GC; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
FEBS J ; 282(24): 4766-81, 2015 Dec.
Article en En | MEDLINE | ID: mdl-26414443
ABSTRACT
The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Adenohipófisis / Proteínas de Unión al ARN / EIF-2 Quinasa Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Adenohipófisis / Proteínas de Unión al ARN / EIF-2 Quinasa Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Año: 2015 Tipo del documento: Article