Your browser doesn't support javascript.
loading
Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability.
Das, Avinash; Morley, Michael; Moravec, Christine S; Tang, W H W; Hakonarson, Hakon; Margulies, Kenneth B; Cappola, Thomas P; Jensen, Shane; Hannenhalli, Sridhar.
  • Das A; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA.
  • Morley M; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159, USA.
  • Moravec CS; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
  • Tang WH; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
  • Hakonarson H; The Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-5159, USA.
  • Margulies KB; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159, USA.
  • Cappola TP; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159, USA.
  • Jensen S; The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6340, USA.
  • Hannenhalli S; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA.
Nat Commun ; 6: 8555, 2015 Oct 12.
Article en En | MEDLINE | ID: mdl-26456756
The standard expression quantitative trait loci (eQTL) detects polymorphisms associated with gene expression without revealing causality. We introduce a coupled Bayesian regression approach--eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combination of regulatory single-nucleotide polymorphisms (SNPs) that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance but also predicts gene expression more accurately than other methods. Based on realistic simulated data, we demonstrate that eQTeL accurately detects causal regulatory SNPs, including those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Expresión Génica / Polimorfismo de Nucleótido Simple / Sitios de Carácter Cuantitativo / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Expresión Génica / Polimorfismo de Nucleótido Simple / Sitios de Carácter Cuantitativo / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2015 Tipo del documento: Article