Your browser doesn't support javascript.
loading
Suppressor of cytokine signaling 2 modulates the immune response profile and development of experimental cerebral malaria.
Brant, Fatima; Miranda, Aline S; Esper, Lisia; Gualdrón-López, Melisa; Cisalpino, Daniel; de Souza, Danielle da Gloria; Rachid, Milene Alvarenga; Tanowitz, Herbert B; Teixeira, Mauro Martins; Teixeira, Antônio Lucio; Machado, Fabiana Simão.
  • Brant F; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Miranda AS; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Esper L; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Gualdrón-López M; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Cisalpino D; Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • de Souza DDG; Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Rachid MA; Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Tanowitz HB; Department of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
  • Teixeira MM; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Teixeira AL; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
  • Machado FS; Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. Elect
Brain Behav Immun ; 54: 73-85, 2016 May.
Article en En | MEDLINE | ID: mdl-26765997
ABSTRACT
Plasmodium falciparum infection results in severe malaria in humans, affecting various organs, including the liver, spleen and brain, and resulting in high morbidity and mortality. The Plasmodium berghei ANKA (PbA) infection in mice closely recapitulates many aspects of human cerebral malaria (CM); thus, this model has been used to investigate the pathogenesis of CM. Suppressor of cytokine signaling 2 (SOCS2), an intracellular protein induced by cytokines and hormones, modulates the immune response, neural development, neurogenesis and neurotrophic pathways. However, the role of SOCS2 during CM remains unknown. SOCS2 knockout (SOCS2(-/-)) mice infected with PbA show an initial resistance to infection with reduced parasitemia and production of TNF, TGF-ß, IL-12 and IL-17 in the brain. Interestingly, in the late phase of infection, SOCS2(-/-) mice display increased parasitemia and reduced Treg cell infiltration, associated with enhanced levels of Th1 and Th17 cells and related cytokines IL-17, IL-6, and TGF-ß in the brain. A significant reduction in protective neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was also observed. Moreover, the molecular alterations in the brain of infected SOCS2(-/-) mice were associated with anxiety-related behaviors and cognition impairment. Mechanistically, these results revealed enhanced nitric oxide (NO) production in PbA-infected SOCS2(-/-) mice, and the inhibition of NO synthesis through l-NAME led to a marked decrease in survival, the disruption of parasitemia control and more pronounced anxiety-like behavior. Treatment with l-NAME also shifted the levels of Th1, Th7 and Treg cells in the brains of infected SOCS2(-/-) mice to the background levels observed in infected WT, with remarkable exception of increased CD8(+)IFN(+) T cells and inflammatory monocytes. These results indicate that SOCS2 plays a dual role during PbA infection, being detrimental in the control of the parasite replication but crucial in the regulation of the immune response and production of neurotrophic factors. Here, we provided strong evidence of a critical relationship between SOCS2 and NO in the orchestration of the immune response and development of CM during PbA infection.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Malaria Cerebral / Proteínas Supresoras de la Señalización de Citocinas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Malaria Cerebral / Proteínas Supresoras de la Señalización de Citocinas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2016 Tipo del documento: Article