Your browser doesn't support javascript.
loading
Climate change projections of West Nile virus infections in Europe: implications for blood safety practices.
Semenza, Jan C; Tran, Annelise; Espinosa, Laura; Sudre, Bertrand; Domanovic, Dragoslav; Paz, Shlomit.
  • Semenza JC; European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden. Jan.Semenza@ecdc.europa.eu.
  • Tran A; CIRAD, UPR Animal et Gestion Intégrée des Risques, Montpellier,, F-34093, France. annelise.tran@cirad.fr.
  • Espinosa L; European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden. Laura.Espinosa@ecdc.europa.eu.
  • Sudre B; European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden. Bertrand.Sudre@ecdc.europa.eu.
  • Domanovic D; European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden. Dragoslav.Domanovic@ecdc.europa.eu.
  • Paz S; Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa,, 31905, Israel. shlomit@geo.haifa.ac.il.
Environ Health ; 15 Suppl 1: 28, 2016 Mar 08.
Article en En | MEDLINE | ID: mdl-26961903
ABSTRACT

BACKGROUND:

West Nile virus (WNV) is transmitted by mosquitoes in both urban as well as in rural environments and can be pathogenic in birds, horses and humans. Extrinsic factors such as temperature and land use are determinants of WNV outbreaks in Europe, along with intrinsic factors of the vector and virus.

METHODS:

With a multivariate model for WNV transmission we computed the probability of WNV infection in 2014, with July 2014 temperature anomalies. We applied the July temperature anomalies under the balanced A1B climate change scenario (mix of all energy sources, fossil and non-fossil) for 2025 and 2050 to model and project the risk of WNV infection in the future. Since asymptomatic infections are common in humans (which can result in the contamination of the donated blood) we estimated the predictive prevalence of WNV infections in the blood donor population.

RESULTS:

External validation of the probability model with 2014 cases indicated good prediction, based on an Area Under Curve (AUC) of 0.871 (SD = 0.032), on the Receiver Operating Characteristic Curve (ROC). The climate change projections for 2025 reveal a higher probability of WNV infection particularly at the edges of the current transmission areas (for example in Eastern Croatia, Northeastern and Northwestern Turkey) and an even further expansion in 2050. The prevalence of infection in (blood donor) populations in the outbreak-affected districts is expected to expand in the future.

CONCLUSIONS:

Predictive modelling of environmental and climatic drivers of WNV can be a valuable tool for public health practice. It can help delineate districts at risk for future transmission. These areas can be subjected to integrated disease and vector surveillance, outreach to the public and health care providers, implementation of personal protective measures, screening of blood donors, and vector abatement activities.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fiebre del Nilo Occidental / Cambio Climático / Donantes de Sangre / Transfusión Sanguínea / Seguridad de la Sangre / Modelos Teóricos Tipo de estudio: Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País como asunto: Europa Idioma: En Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fiebre del Nilo Occidental / Cambio Climático / Donantes de Sangre / Transfusión Sanguínea / Seguridad de la Sangre / Modelos Teóricos Tipo de estudio: Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País como asunto: Europa Idioma: En Año: 2016 Tipo del documento: Article