Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.
Mol Cancer Ther
; 15(8): 1931-42, 2016 08.
Article
en En
| MEDLINE
| ID: mdl-27196773
Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPß signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias de la Mama
/
Comunicación Celular
/
Emodina
/
Inhibidores de Proteínas Quinasas
/
Macrófagos
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Female
/
Humans
Idioma:
En
Año:
2016
Tipo del documento:
Article