Your browser doesn't support javascript.
loading
Beneficial effect of low-level laser therapy in acute lung injury after i-I/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling.
Carvalho, J L; Britto, A; de Oliveira, A P Ligeiro; Castro-Faria-Neto, H; Albertini, R; Anatriello, E; Aimbire, F.
  • Carvalho JL; Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
  • Britto A; Laboratory of Pulmonary Immunology and Exercise, University Nove de Julho - UNINOVE, São José dos Campos, Brazil.
  • de Oliveira AP; Laboratory of Pulmonary Immunology and Exercise, University Nove de Julho - UNINOVE, São José dos Campos, Brazil.
  • Castro-Faria-Neto H; Laboratory of Immunopharmacology, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, Brazil.
  • Albertini R; Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
  • Anatriello E; Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
  • Aimbire F; Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil. flavio.aimbire@unifesp.br.
Lasers Med Sci ; 32(2): 305-315, 2017 Feb.
Article en En | MEDLINE | ID: mdl-27924419
ABSTRACT
The use of low-level laser for lung inflammation treatment has been evidenced in animal studies as well as clinical trials. The laser action mechanism seems to involve downregulation of neutrophil chemoattractants and transcription factors. Innate immune responses against microorganisms may be mediated by toll-like receptors (TLR). Intestinal ischemia and reperfusion (i-I/R) lead to bacterial product translocation, such as endotoxin, which consequently activates TLRs leading to intestinal and lung inflammation after gut trauma. Thus, the target of this study was to investigate the role of TLR activation in the laser (660 nm, 30 mW, 67.5 J/cm2, 0.375 mW/cm2, 5.4 J, 180 s, and spot size with 0.08 cm2) effect applied in contact with the skin on axillary lymph node in lung inflammation induced by i-I/R through a signaling adaptor protein known as myeloid differentiation factor 88 (MyD88). It is a quantitative, experimental, and laboratory research using the C57Bl/6 and MyD88-/- mice (n = 6 mice for experimental group). Statistical differences were evaluated by ANOVA and the Tukey-Kramer multiple comparisons test to determine differences among groups. In order to understand how the absence of MyD88 can interfere in the laser effect on lung inflammation, MyD88-/- mice were treated or not with laser and subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). In summary, the laser decreased the MPO activity and the lung vascular permeability, thickened the alveolar septa, reduced both the edema and the alveolar hemorrhage, as well as significantly decreased neutrophils infiltration in MyD88-deficient mice as well in wild-type mice. It noted a downregulation in chemokine IL-8 production as well as a cytokine IL-10 upregulation in these animals. The results also evidenced that in absence of IL-10, the laser effect is reversed. Based on these results, we suggest that the beneficial effect of laser in acute lung injury after i-I/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño por Reperfusión / Transducción de Señal / Interleucina-10 / Terapia por Luz de Baja Intensidad / Receptores Toll-Like / Factor 88 de Diferenciación Mieloide / Lesión Pulmonar Aguda / Intestinos Límite: Animals Idioma: En Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño por Reperfusión / Transducción de Señal / Interleucina-10 / Terapia por Luz de Baja Intensidad / Receptores Toll-Like / Factor 88 de Diferenciación Mieloide / Lesión Pulmonar Aguda / Intestinos Límite: Animals Idioma: En Año: 2017 Tipo del documento: Article