Your browser doesn't support javascript.
loading
Interrogating the Escherichia coli cell cycle by cell dimension perturbations.
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli.
  • Zheng H; Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
  • Ho PY; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
  • Jiang M; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
  • Tang B; Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
  • Liu W; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
  • Li D; Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
  • Yu X; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
  • Kleckner NE; Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
  • Amir A; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.
  • Liu C; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A ; 113(52): 15000-15005, 2016 12 27.
Article en En | MEDLINE | ID: mdl-27956612
ABSTRACT
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ciclo Celular / Replicación del ADN / Escherichia coli Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ciclo Celular / Replicación del ADN / Escherichia coli Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Año: 2016 Tipo del documento: Article