Your browser doesn't support javascript.
loading
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J.
  • Kilpinen H; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Goncalves A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Leha A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Afzal V; Centre for Gene Regulation &Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
  • Alasoo K; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Ashford S; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
  • Bala S; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Bensaddek D; Centre for Gene Regulation &Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
  • Casale FP; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Culley OJ; Centre for Stem Cells &Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
  • Danecek P; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Faulconbridge A; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Harrison PW; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Kathuria A; Centre for Stem Cells &Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
  • McCarthy D; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • McCarthy SA; St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
  • Meleckyte R; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Memari Y; Centre for Stem Cells &Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
  • Moens N; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Soares F; Centre for Stem Cells &Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
  • Mann A; Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Streeter I; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Agu CA; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Alderton A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Nelson R; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Harper S; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Patel M; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • White A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Patel SR; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Clarke L; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Halai R; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Kirton CM; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Kolb-Kokocinski A; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Beales P; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Birney E; UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
  • Danovi D; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Lamond AI; Centre for Stem Cells &Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
  • Ouwehand WH; Centre for Gene Regulation &Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
  • Vallier L; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Watt FM; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
  • Durbin R; NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.
  • Stegle O; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Gaffney DJ; Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
Nature ; 546(7658): 370-375, 2017 06 15.
Article en En | MEDLINE | ID: mdl-28489815
ABSTRACT
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Variación Genética / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Variación Genética / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2017 Tipo del documento: Article