Your browser doesn't support javascript.
loading
The role of Arthrobacter viscosus in the removal of Pb(II) from aqueous solutions.
Hlihor, Raluca Maria; Rosca, Mihaela; Tavares, Teresa; Gavrilescu, Maria.
  • Hlihor RM; Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Street, 700050 Iasi, Romania E-mail: raluca.hlihor@ch.tuiasi.ro; Department of Horticultural Technologie
  • Rosca M; Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Street, 700050 Iasi, Romania E-mail: raluca.hlihor@ch.tuiasi.ro.
  • Tavares T; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
  • Gavrilescu M; Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Street, 700050 Iasi, Romania E-mail: raluca.hlihor@ch.tuiasi.ro; Academy of Romanian Scientists, 54 Spla
Water Sci Technol ; 76(7-8): 1726-1738, 2017 Oct.
Article en En | MEDLINE | ID: mdl-28991789
The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Arthrobacter / Contaminantes Químicos del Agua / Agua / Plomo Tipo de estudio: Prognostic_studies Idioma: En Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Arthrobacter / Contaminantes Químicos del Agua / Agua / Plomo Tipo de estudio: Prognostic_studies Idioma: En Año: 2017 Tipo del documento: Article