Your browser doesn't support javascript.
loading
Phosphorylated immunoreceptor tyrosine-based activation motifs and integrin cytoplasmic domains activate spleen tyrosine kinase via distinct mechanisms.
Antenucci, Lina; Hytönen, Vesa P; Ylänne, Jari.
  • Antenucci L; Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9 C, 40014 Jyväskylä, Finland. Electronic address: lina.antenucci@jyu.fi.
  • Hytönen VP; Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere 33014, Finland.
  • Ylänne J; Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9 C, 40014 Jyväskylä, Finland.
J Biol Chem ; 293(13): 4591-4602, 2018 03 30.
Article en En | MEDLINE | ID: mdl-29440271
ABSTRACT
Spleen tyrosine kinase (Syk) is involved in cellular adhesion and also in the activation and development of hematopoietic cells. Syk activation induced by genomic rearrangement has been linked to certain T-cell lymphomas, and Syk inhibitors have been shown to prolong survival of patients with B-cell lineage malignancies. Syk is activated either by its interaction with a double-phosphorylated immunoreceptor tyrosine-based activation motif (pITAM), which induces rearrangements in the Syk structure, or by the phosphorylation of specific tyrosine residues. In addition to its immunoreceptor function, Syk is activated downstream of integrin pathways, and integrins bind to the same region in Syk as does pITAM. However, it is unknown whether integrins and pITAM use the same mechanism to activate Syk. Here, using purified Syk protein and fluorescence-based enzyme assay we investigated whether interaction of the integrin ß3 cytoplasmic domain with the Syk regulatory domain causes changes in Syk activity similar to those induced by pITAM peptides. We observed no direct Syk activation by soluble integrin peptide, and integrin did not compete with pITAM-induced activation even though at high concentrations, the integrin cytoplasmic domain peptide competed with Syk's substrate. However, clustered integrin peptides induced Syk activation, presumably via a transphosphorylation mechanism. Moreover, the clustered integrins also activated a Syk variant in which tyrosines were replaced with phenylalanine (Y348F/Y352F), indicating that clustered integrin-induced Syk activation involved other phosphorylation sites. In conclusion, integrin cytoplasmic domains do not directly induce Syk conformational changes and do not activate Syk via the same mechanism as pITAM.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Péptidos / Integrinas / Quinasa Syk Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Péptidos / Integrinas / Quinasa Syk Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article