Your browser doesn't support javascript.
loading
Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy.
Fermie, Job; Liv, Nalan; Ten Brink, Corlinda; van Donselaar, Elly G; Müller, Wally H; Schieber, Nicole L; Schwab, Yannick; Gerritsen, Hans C; Klumperman, Judith.
  • Fermie J; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Liv N; Section Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
  • Ten Brink C; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • van Donselaar EG; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Müller WH; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Schieber NL; Section Cryo-EM, Department of Chemistry, Utrecht University, Utrecht, The Netherlands.
  • Schwab Y; Electron Microscopy Core Facility, EMBL Heidelberg, Heidelberg, Germany.
  • Gerritsen HC; Electron Microscopy Core Facility, EMBL Heidelberg, Heidelberg, Germany.
  • Klumperman J; Section Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Traffic ; 19(5): 354-369, 2018 05.
Article en En | MEDLINE | ID: mdl-29451726
ABSTRACT
Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biogénesis de Organelos / Lisosomas Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biogénesis de Organelos / Lisosomas Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article