Your browser doesn't support javascript.
loading
Estimating a Bias in ICD Encodings for Billing Purposes.
Fette, Georg; Krug, Markus; Kaspar, Mathias; Liman, Leon; Dietrich, Georg; Ertl, Maximilian; Krebs, Jonathan; Störk, Stefan; Puppe, Frank.
  • Fette G; Würzburg University, Computer Science 6.
  • Krug M; Würzburg University, Computer Science 6.
  • Kaspar M; University Hospital of Würzburg, Comprehensive Heart Failure Center.
  • Liman L; Würzburg University, Computer Science 6.
  • Dietrich G; Würzburg University, Computer Science 6.
  • Ertl M; University Hospital of Würzburg, Comprehensive Heart Failure Center.
  • Krebs J; Würzburg University, Computer Science 6.
  • Störk S; University Hospital of Würzburg, Comprehensive Heart Failure Center.
  • Puppe F; Würzburg University, Computer Science 6.
Stud Health Technol Inform ; 247: 141-145, 2018.
Article en En | MEDLINE | ID: mdl-29677939
ICD encoded diagnoses are a popular criterion for eligibility algorithms for study cohort recruitment. However, "official" ICD encoded diagnoses used for billing purposes are afflicted with a bias originating from legal issues. This work presents an approach to estimate the degree of the encoding bias for the complete ICD catalogue at a German university hospital. The free text diagnoses sections of discharge letters are automatically classified using a supervised machine learning algorithm. The automatic classifications are compared with the official, manually classified codes. For selected ICD codes the approach works sufficiently well.
Asunto(s)
Palabras clave
Search on Google
Banco de datos: MEDLINE Asunto principal: Alta del Paciente / Algoritmos / Aprendizaje Automático Supervisado Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Asunto principal: Alta del Paciente / Algoritmos / Aprendizaje Automático Supervisado Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article