Estimating a Bias in ICD Encodings for Billing Purposes.
Stud Health Technol Inform
; 247: 141-145, 2018.
Article
en En
| MEDLINE
| ID: mdl-29677939
ICD encoded diagnoses are a popular criterion for eligibility algorithms for study cohort recruitment. However, "official" ICD encoded diagnoses used for billing purposes are afflicted with a bias originating from legal issues. This work presents an approach to estimate the degree of the encoding bias for the complete ICD catalogue at a German university hospital. The free text diagnoses sections of discharge letters are automatically classified using a supervised machine learning algorithm. The automatic classifications are compared with the official, manually classified codes. For selected ICD codes the approach works sufficiently well.
Palabras clave
Search on Google
Banco de datos:
MEDLINE
Asunto principal:
Alta del Paciente
/
Algoritmos
/
Aprendizaje Automático Supervisado
Límite:
Humans
Idioma:
En
Año:
2018
Tipo del documento:
Article