Your browser doesn't support javascript.
loading
Cubic Sodium Cobalt Metaphosphate [NaCo(PO3)3] as a Cathode Material for Sodium Ion Batteries.
Gond, Ritambhara; Rao, Rayavapuru Prasada; Pralong, Valerie; Lebedev, Oleg I; Adams, Stefan; Barpanda, Prabeer.
  • Gond R; Faraday Materials Laboratory, Materials Research Centre , Indian Institute of Science , C. V. Raman Avenue , Bangalore 560012 , India.
  • Rao RP; Department of Materials Science and Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117546 , Singapore.
  • Pralong V; Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN , Université de Caen, CNRS , 6 bd Maréchal Juin , 14050 Caen , France.
  • Lebedev OI; Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN , Université de Caen, CNRS , 6 bd Maréchal Juin , 14050 Caen , France.
  • Adams S; Department of Materials Science and Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117546 , Singapore.
  • Barpanda P; Faraday Materials Laboratory, Materials Research Centre , Indian Institute of Science , C. V. Raman Avenue , Bangalore 560012 , India.
Inorg Chem ; 57(11): 6324-6332, 2018 Jun 04.
Article en En | MEDLINE | ID: mdl-29756451
Cubic-framework sodium cobalt-based metaphosphate NaCo(PO3)3 was recently demonstrated to be an attractive Na+ cationic conductor. It can be potentially used in the next-generation rechargeable Na ion batteries. The crystal structure and electrical conductivity were studied and found to have a three-dimensional framework with interconnecting tunnels for Na+ migration ( J. Solid State Electrochem. , 2016 , 20 , 1241 ). This inspired us to study the electrochemical (de)intercalation behavior of Na+ in the NaCo(PO3)3 assuming a cubic Pa3̅ framework. Herein, synergizing experimental and computational tools, we present the first report on the electrochemical activity and Na+ diffusion pathway analysis of cubic NaCo(PO3)3 prepared via conventional solid-state route. The electrochemical analyses reveal NaCo(PO3)3 to be an active sodium insertion material with well-defined reversible Co3+/Co2+ redox activity centered at 3.3 V (vs Na/Na+). Involving a solid-solution redox mechanism, close to 0.7 Na+ per formula unit can be reversibly extracted. This experimental finding is augmented with bond valence site energy (BVSE) modeling to clarify Na+ migration in cubic NaCo(PO3)3. BVSE analyses suggest feasible Na+ migration with moderate energy barrier of 0.68 eV. Cubic NaCo(PO3)3 forms a 3.3 V sodium insertion material.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2018 Tipo del documento: Article