Your browser doesn't support javascript.
loading
Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography.
Espinha, André; Dore, Camilla; Matricardi, Cristiano; Alonso, Maria Isabel; Goñi, Alejandro R; Mihi, Agustín.
  • Espinha A; Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Carrer dels Til·lers S/N, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
  • Dore C; Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Carrer dels Til·lers S/N, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
  • Matricardi C; Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Carrer dels Til·lers S/N, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
  • Alonso MI; Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Carrer dels Til·lers S/N, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
  • Goñi AR; Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Carrer dels Til·lers S/N, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
  • Mihi A; Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
Nat Photonics ; 12(6): 343-348, 2018 Jun.
Article en En | MEDLINE | ID: mdl-29881447
ABSTRACT
As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is an alternative way to achieve structural colour in this material which is usually obtained exploiting its chiral nematic phase. Cellulose based photonic crystals are biocompatible and can be dissolved in water or not depending on the derivative employed. Patterned cellulose membranes exhibit tuneable colours and may be used to boost the photoluminescence of a host organic dye. Furthermore, we show how metal coating these cellulose photonic architectures leads to plasmonic crystals with excellent optical properties acting as disposable surface enhanced Raman spectroscopy substrates.