Your browser doesn't support javascript.
loading
Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source.
Mahieu, B; Jourdain, N; Ta Phuoc, K; Dorchies, F; Goddet, J-P; Lifschitz, A; Renaudin, P; Lecherbourg, L.
  • Mahieu B; LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France. benoit.mahieu@ensta.fr.
  • Jourdain N; Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, 33400, Talence, France.
  • Ta Phuoc K; CEA-DAM-DIF, 91297, Arpajon, France.
  • Dorchies F; LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
  • Goddet JP; Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, 33400, Talence, France.
  • Lifschitz A; LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
  • Renaudin P; LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
  • Lecherbourg L; CEA-DAM-DIF, 91297, Arpajon, France.
Nat Commun ; 9(1): 3276, 2018 08 16.
Article en En | MEDLINE | ID: mdl-30115918
ABSTRACT
Exploring and understanding ultrafast processes at the atomic level is a scientific challenge. Femtosecond X-ray absorption spectroscopy (XAS) arises as an essential experimental probing method, as it can simultaneously reveal both electronic and atomic structures, and thus potentially unravel their nonequilibrium dynamic interplay which is at the origin of most of the ultrafast mechanisms. However, despite considerable efforts, there is still no femtosecond X-ray source suitable for routine experiments. Here we show that betatron radiation from relativistic laser-plasma interaction combines ideal features for femtosecond XAS. It has been used to investigate the nonequilibrium dynamics of a copper sample brought at extreme conditions of temperature and pressure by a femtosecond laser pulse. We measured a rise-time of the electron temperature below 100 fs. This experiment demonstrates the great potential of the table-top betatron source which makes possible the investigation of unexplored ultrafast processes in manifold fields of research.