Your browser doesn't support javascript.
loading
Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate.
Tischler, Julia; Gruhn, Wolfram H; Reid, John; Allgeyer, Edward; Buettner, Florian; Marr, Carsten; Theis, Fabian; Simons, Ben D; Wernisch, Lorenz; Surani, M Azim.
  • Tischler J; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
  • Gruhn WH; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
  • Reid J; MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
  • Allgeyer E; The Alan Turing Institute, British Library, London, UK.
  • Buettner F; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
  • Marr C; Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
  • Theis F; Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
  • Simons BD; Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
  • Wernisch L; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems Technische Universität München, Garching, Germany.
  • Surani MA; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
EMBO J ; 38(1)2019 01 03.
Article en En | MEDLINE | ID: mdl-30257965
ABSTRACT
An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an in vitro model for early mouse embryonic development from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Células Madre Pluripotentes / Células Madre Embrionarias / Células Germinativas / Ácidos Cetoglutáricos Límite: Animals Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Células Madre Pluripotentes / Células Madre Embrionarias / Células Germinativas / Ácidos Cetoglutáricos Límite: Animals Idioma: En Año: 2019 Tipo del documento: Article