Your browser doesn't support javascript.
loading
Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography.
Amaral, Patricia de Aguiar; Autheman, Delphine; de Melo, Guilherme Dias; Gouault, Nicolas; Cupif, Jean-François; Goyard, Sophie; Dutra, Patricia; Coatnoan, Nicolas; Cosson, Alain; Monet, Damien; Saul, Frederick; Haouz, Ahmed; Uriac, Philippe; Blondel, Arnaud; Minoprio, Paola.
  • Amaral PA; Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France.
  • Autheman D; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • de Melo GD; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • Gouault N; Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France.
  • Cupif JF; Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France.
  • Goyard S; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • Dutra P; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • Coatnoan N; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • Cosson A; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
  • Monet D; Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France.
  • Saul F; Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France.
  • Haouz A; Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France.
  • Uriac P; Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France.
  • Blondel A; Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France.
  • Minoprio P; Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France.
PLoS Negl Trop Dis ; 12(10): e0006853, 2018 10.
Article en En | MEDLINE | ID: mdl-30372428
ABSTRACT
Chagas disease, caused by Trypanosoma cruzi, affects millions of people in South America and no satisfactory therapy exists, especially for its life threatening chronic phase. We targeted the Proline Racemase of T. cruzi, which is present in all stages of the parasite life cycle, to discover new inhibitors against this disease. The first published crystal structures of the enzyme revealed that the catalytic site is too small to allow any relevant drug design. In previous work, to break through the chemical space afforded to virtual screening and drug design, we generated intermediate models between the open (ligand free) and closed (ligand bound) forms of the enzyme. In the present work, we co-crystallized the enzyme with the selected inhibitors and found that they were covalently bound to the catalytic cysteine residues in the active site, thus explaining why these compounds act as irreversible inhibitors. These results led us to the design of a novel, more potent specific inhibitor, NG-P27. Co-crystallization of this new inhibitor with the enzyme allowed us to confirm the predicted protein functional motions and further characterize the chemical mechanism. Hence, the catalytic Cys300 sulfur atom of the enzyme attacks the C2 carbon of the inhibitor in a coupled, regiospecific-stereospecific Michael reaction with trans-addition of a proton on the C3 carbon. Strikingly, the six different conformations of the catalytic site in the crystal structures reported in this work had key similarities to our intermediate models previously generated by inference of the protein functional motions. These crystal structures span a conformational interval covering roughly the first quarter of the opening mechanism, demonstrating the relevance of modeling approaches to break through chemical space in drug design.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Trypanosoma cruzi / Inhibidores Enzimáticos / Isomerasas de Aminoácido Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Trypanosoma cruzi / Inhibidores Enzimáticos / Isomerasas de Aminoácido Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2018 Tipo del documento: Article