Your browser doesn't support javascript.
loading
The metabolite BH4 controls T cell proliferation in autoimmunity and cancer.
Cronin, Shane J F; Seehus, Corey; Weidinger, Adelheid; Talbot, Sebastien; Reissig, Sonja; Seifert, Markus; Pierson, Yann; McNeill, Eileen; Longhi, Maria Serena; Turnes, Bruna Lenfers; Kreslavsky, Taras; Kogler, Melanie; Hoffmann, David; Ticevic, Melita; da Luz Scheffer, Débora; Tortola, Luigi; Cikes, Domagoj; Jais, Alexander; Rangachari, Manu; Rao, Shuan; Paolino, Magdalena; Novatchkova, Maria; Aichinger, Martin; Barrett, Lee; Latremoliere, Alban; Wirnsberger, Gerald; Lametschwandtner, Guenther; Busslinger, Meinrad; Zicha, Stephen; Latini, Alexandra; Robson, Simon C; Waisman, Ari; Andrews, Nick; Costigan, Michael; Channon, Keith M; Weiss, Guenter; Kozlov, Andrey V; Tebbe, Mark; Johnsson, Kai; Woolf, Clifford J; Penninger, Josef M.
  • Cronin SJF; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Seehus C; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • Weidinger A; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • Talbot S; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • Reissig S; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • Seifert M; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.
  • Pierson Y; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • McNeill E; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • Longhi MS; Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada.
  • Turnes BL; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
  • Kreslavsky T; Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.
  • Kogler M; Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Hoffmann D; Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK.
  • Ticevic M; Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
  • da Luz Scheffer D; Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Boston, MA, USA.
  • Tortola L; LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Cikes D; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria.
  • Jais A; Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
  • Rangachari M; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Rao S; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Paolino M; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Novatchkova M; LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Aichinger M; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Barrett L; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Latremoliere A; Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
  • Wirnsberger G; Department of Neurosciences, Centre de Recherche de CHU de Québec-Université Laval, Québec, Québec, Canada.
  • Lametschwandtner G; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada.
  • Busslinger M; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • Zicha S; Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
  • Latini A; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria.
  • Robson SC; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria.
  • Waisman A; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • Andrews N; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • Costigan M; Neurosurgery Department, Johns Hopkins School of Medicine, Baltimore, MD, USA.
  • Channon KM; Apeiron Biologics AG, Vienna, Austria.
  • Weiss G; Apeiron Biologics AG, Vienna, Austria.
  • Kozlov AV; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria.
  • Tebbe M; Quartet Medicine, 400 Technology Square, Cambridge, MA, USA.
  • Johnsson K; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • Woolf CJ; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • Penninger JM; LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
Nature ; 563(7732): 564-568, 2018 11.
Article en En | MEDLINE | ID: mdl-30405245
Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades Autoinmunes / Biopterinas / Linfocitos T / Neoplasias Tipo de estudio: Prognostic_studies Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades Autoinmunes / Biopterinas / Linfocitos T / Neoplasias Tipo de estudio: Prognostic_studies Idioma: En Año: 2018 Tipo del documento: Article