Mycobacterium tuberculosis Requires Regulation of ESX-5 Secretion for Virulence in Irgm1-Deficient Mice.
Infect Immun
; 87(2)2019 02.
Article
en En
| MEDLINE
| ID: mdl-30455198
The Mycobacterium tuberculosis type VII secretion system ESX-5, which has been implicated in virulence, is activated at the transcriptional level by the phosphate starvation-responsive Pst/SenX3-RegX3 signal transduction system. Deletion of pstA1, which encodes a Pst phosphate transporter component, causes constitutive activation of the response regulator RegX3, hypersecretion of ESX-5 substrates and attenuation in the mouse infection model. We hypothesized that constitutive activation of ESX-5 secretion causes attenuation of the ΔpstA1 mutant. To test this, we uncoupled ESX-5 from regulation by RegX3. Using electrophoretic mobility shift assays, we defined a RegX3 binding site in the esx-5 locus. Deletion or mutation of the RegX3 binding site reversed hypersecretion of the ESX-5 substrate EsxN by the ΔpstA1 mutant and abrogated induction of EsxN secretion in response to phosphate limitation by wild-type M. tuberculosis The esx-5 RegX3 binding site deletion (ΔBS) also suppressed attenuation of the ΔpstA1 mutant in Irgm1-/- mice. These data suggest that constitutive ESX-5 secretion sensitizes M. tuberculosis to an immune response that still occurs in Irgm1-/- mice. However, the ΔpstA1 ΔBS mutant remained attenuated in both NOS2-/- and C57BL/6 mice, suggesting that factors other than ESX-5 secretion also contribute to attenuation of the ΔpstA1 mutant. In addition, a ΔpstA1 ΔesxN mutant lacking the hypersecreted ESX-5 substrate EsxN remained attenuated in Irgm1-/- mice, suggesting that ESX-5 substrates other than EsxN cause increased susceptibility to host immunity. Our data indicate that while M. tuberculosis requires ESX-5 for virulence, it tightly controls secretion of ESX-5 substrates to avoid elimination by host immune responses.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Proteínas Bacterianas
/
Tuberculosis
/
Virulencia
/
Proteínas de Unión al GTP
/
Factores de Virulencia
/
Mycobacterium tuberculosis
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Año:
2019
Tipo del documento:
Article