Your browser doesn't support javascript.
loading
Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial.
Badano, Aldo; Graff, Christian G; Badal, Andreu; Sharma, Diksha; Zeng, Rongping; Samuelson, Frank W; Glick, Stephen J; Myers, Kyle J.
  • Badano A; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Graff CG; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Badal A; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Sharma D; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Zeng R; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Samuelson FW; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Glick SJ; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
  • Myers KJ; Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland.
JAMA Netw Open ; 1(7): e185474, 2018 11 02.
Article en En | MEDLINE | ID: mdl-30646401
ABSTRACT
Importance Expensive and lengthy clinical trials can delay regulatory evaluation of innovative technologies, affecting patient access to high-quality medical products. Simulation is increasingly being used in product development but rarely in regulatory applications.

Objectives:

To conduct a computer-simulated imaging trial evaluating digital breast tomosynthesis (DBT) as a replacement for digital mammography (DM) and to compare the results with a comparative clinical trial. Design, Setting, and

Participants:

The simulated Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) trial was designed to replicate a clinical trial that used human patients and radiologists. Images obtained with in silico versions of DM and DBT systems via fast Monte Carlo x-ray transport were interpreted by a computational reader detecting the presence of lesions. A total of 2986 synthetic image-based virtual patients with breast sizes and radiographic densities representative of a screening population and compressed thicknesses from 3.5 to 6 cm were generated using an analytic approach in which anatomical structures are randomly created within a predefined breast volume and compressed in the craniocaudal orientation. A positive cohort contained a digitally inserted microcalcification cluster or spiculated mass. Main Outcomes and

Measures:

The trial end point was the difference in area under the receiver operating characteristic curve between modalities for lesion detection. The trial was sized for an SE of 0.01 in the change in area under the curve (AUC), half the uncertainty in the comparative clinical trial.

Results:

In this trial, computational readers analyzed 31 055 DM and 27 960 DBT cases from 2986 virtual patients with the following Breast Imaging Reporting and Data System densities 286 (9.6%) extremely dense, 1200 (40.2%) heterogeneously dense, 1200 (40.2%) scattered fibroglandular densities, and 300 (10.0%) almost entirely fat. The mean (SE) change in AUC was 0.0587 (0.0062) (P < .001) in favor of DBT. The change in AUC was larger for masses (mean [SE], 0.0903 [0.008]) than for calcifications (mean [SE], 0.0268 [0.004]), which was consistent with the findings of the comparative trial (mean [SE], 0.065 [0.017] for masses and -0.047 [0.032] for calcifications). Conclusions and Relevance The results of the simulated VICTRE trial are consistent with the performance seen in the comparative trial. While further research is needed to assess the generalizability of these findings, in silico imaging trials represent a viable source of regulatory evidence for imaging devices.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mamografía Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Female / Humans Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mamografía Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Female / Humans Idioma: En Año: 2018 Tipo del documento: Article