Your browser doesn't support javascript.
loading
ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma.
Liu, Yalu; Wang, Xiaogan; Deng, Lijuan; Ping, Lingyan; Shi, Yunfei; Zheng, Wen; Lin, Ningjing; Wang, Xiaopei; Tu, Meifeng; Xie, Yan; Liu, Weiping; Ying, Zhitao; Zhang, Chen; Pan, Zhengying; Wang, Xi; Ding, Ning; Song, Yuqin; Zhu, Jun.
  • Liu Y; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Wang X; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Deng L; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Ping L; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Shi Y; 2Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Zheng W; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Lin N; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Wang X; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Tu M; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Xie Y; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Liu W; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Ying Z; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Zhang C; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Pan Z; 3Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Lishui Road, Xili, Nanshan District, Shenzhen, 518055 People's Republic of China.
  • Wang X; 4Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xisitoutiao Road, Fengtai District, Beijing, 100069 People's Republic of China.
  • Ding N; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Song Y; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
  • Zhu J; 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China.
Cancer Cell Int ; 19: 32, 2019.
Article en En | MEDLINE | ID: mdl-30814910
ABSTRACT

BACKGROUND:

Angioimmunoblastic T cell lymphoma (AITL) is a distinct subtype of peripheral T cell lymphoma and associated with poor outcomes. The activation status of T cell receptor (TCR) signaling has recently become a focus of attention in terms of the therapeutic targets. However, the molecular pathogenesis mechanisms and novel therapeutic targets are largely unknown.

METHODS:

Antibodies specific to phosphorylated ZAP70, ITK and PLCγ1 were used to identify the activation status of intracellular proteins involved in TCR signaling in AITL patients. Malignant T cell lymphoma cells were transduced with a lentiviral construct containing ITK shRNA for cellular and functional assays. The antitumor effects of the selective ITK inhibitor BMS-509744 were determined in vitro and in vivo.

RESULTS:

Immunohistochemistry staining showed that more than half of the AITL patients (n = 38) exhibited continuously activated intracellular TCR signaling pathway. Patients positive for phosphorylated ITK showed a lower rate of complete response (20% vs. 75%, P = 0.004) and a shorter progression-free survival (5.17 months vs. 25.1 months, P = 0.022) than patients negative for phosphorylated ITK. Genetic and pharmacological cellular ITK inhibition significantly compromised the proliferation, invasion and migration of malignant T cells. The selective ITK inhibitor BMS-509744 also induced the pro-apoptotic effects and G2/M phase cell cycle arrest in vitro and in vivo. Finally, inhibition of ITK synergistically enhanced the antitumor effect of vincristine and doxorubicin on malignant T cell lymphoma cell lines.

CONCLUSIONS:

Our findings suggest that ITK may be a novel candidate therapeutic target for the treatment of patients with ITK-expressing malignant T-cell lymphomas.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2019 Tipo del documento: Article